Blockade of glioma proliferation through allosteric inhibition of JAK2.

نویسندگان

  • Kunyan He
  • Qi Qi
  • Chi-Bun Chan
  • Ge Xiao
  • Xia Liu
  • Carol Tucker-Burden
  • Liya Wang
  • Hui Mao
  • Xiang Lu
  • Frank E McDonald
  • Hongbo Luo
  • Qi-Wen Fan
  • William A Weiss
  • Shi-Yong Sun
  • Daniel J Brat
  • Keqiang Ye
چکیده

The gene that encodes the epidermal growth factor receptor (EGFR) is frequently overexpressed or mutated in human cancers, including glioblastoma. However, the efficacy of EGFR-targeted small-molecule inhibitors or monoclonal antibodies in glioblastomas that also have mutation or deletion of the gene encoding phosphatase and tensin homolog (PTEN) has been modest. We found that EGFR signaling was blocked by a small molecule (G5-7) that selectively inhibited Janus kinase 2 (JAK2)-mediated phosphorylation and activation of EGFR and STAT3 (signal transducer and activator of transcription 3) by binding to JAK2, thereby decreasing the activity of downstream signaling by mTOR (mammalian target of rapamycin) and inducing cell cycle arrest. G5-7 inhibited the proliferation of PTEN-deficient glioblastoma cell lines harboring a constitutively active variant of EGFR (U87MG/EGFRvIII) and human glioblastoma explant neurosphere cultures, but the drug only weakly inhibited the proliferation of either glioblastoma cell lines that were wild type for EGFR and stably transfected with PTEN (U87MG/PTEN) or normal neural progenitor cells and astrocytes. Additionally, G5-7 reduced vascular endothelial growth factor (VEGF) secretion and endothelial cell migration and induced apoptosis in glioblastoma xenografts, thereby suppressing glioblastoma growth in vivo. Furthermore, G5-7 was more potent than EGFR or JAK2 inhibitors that interfere with either ligand or adenosine 5'-triphosphate (ATP) binding at impeding glioblastoma cell proliferation, demonstrating that this allosteric JAK2 inhibitor may be an effective clinical strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nogo receptor blockade enhances subventricular zone’s stem cells proliferation and differentiation in demyelination context

Introduction: Nogo-A and Nogo receptor (NgR) are expressed in the subventricular zone (SVZ) stem cells. NgR plays critical inhibitory roles in axonal regeneration and remyelination. However, the role of NgR in SVZ niche behaviors in demyelination context is still uncertain. Here we investigated the effects of NgR inhibition on SVZ niche reaction in a local model of demyelination in adult mouse ...

متن کامل

IL-10 secreted by M2 macrophage promoted tumorigenesis through interaction with JAK2 in glioma

M2 tumor-associated macrophage has been found to play a supportive role in the progression of glioma. The underlying mechanism, nevertheless, has been largely unknown. In our study, to investigate how M2 macrophage played role in glioma, firstly we've analyzed the clinicopathological significance of M2 macrophage existence on clinical tissues of glioma using detection of CD163 expression with i...

متن کامل

JAK2-STAT5 signaling

A recent article published by Britschgi et al. in Cancer Cell, "JAK2/STAT5 Inhibition Circumvents Resistance to PI3K/mTOR Blockade: A Rationale for Cotargeting These Pathways in Metastatic Breast Cancer," describes a positive feedback loop of JAK2/STAT5 activation that drives resistance to PI3K/mTOR inhibition in breast cancer. The authors found that genetic or pharmacological inhibition of JAK...

متن کامل

Effect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.

Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...

متن کامل

Preclinical Development Therapeutic Potential of AZD1480 for the Treatment of Human Glioblastoma

Aberrant activationof the Januskinase (JAK)/signal transducer andactivatorof transcription (STAT)pathway has been implicated in glioblastoma (GBM) progression. To develop a therapeutic strategy to inhibit STAT-3 signaling, we have evaluated the effects of AZD1480, a pharmacologic inhibitor of JAK1 and JAK2. In this study, the in vitro efficacy ofAZD1480was tested inhumanandmurine glioma cell li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science signaling

دوره 6 283  شماره 

صفحات  -

تاریخ انتشار 2013